

Vehicle Detection

using Histogram of Oriented Gradients and Support Vector Machines

2019

Felix Jorczik, Philipp Rothmann

Institute for Electrical Engineering in Medicine University of Lübeck

Structure

Introduction

Preprocessing

Histogram of Oriented Gradients (HOG)

Support Vector Machine (SVM)

Post Processing

Results

The Task

- Detect vehicle in video footage
- Camera in a cars wind-shield
- Highway environment

Example Video

example video

The Pipeline

- 1. Frame extraction
- 2. Preprocessing
 - \rightarrow Colorspace Conversion
 - \rightarrow Sliding Windows
- 3. Feature computation
 - \rightarrow Histogram of Oriented Gradient (HOG)
- 4. Classification
 - \rightarrow Support Vector Machine (SVM)
- 5. False positive detection
 - \rightarrow Heat Map

Colorspace Conversion

- Best results with YCbCr
- luminance information extracted in Y
- color change
- · Feature computation for each channel seperately

Sliding Window

Generating subimages in different sizes

Sliding Window

Histogram of Oriented Gradients (HOG)

- Popular since Dalal and Triggs used them for pedestrian detection (2005)
- · Good representation of object shapes
- Distribution of gradients
- Quite small feature descriptor

HOG Pipeline

- 1. Gradient computation
- 2. Orientation binning
- 3. Block normalisation

Gradient Computation

- Edge detection through convolution with simple kernel $\left[-1,0,1\right]$
- Calculation of the magnitude and direction
- Seperation in cells (pixel per cells)

		-			-		
	11	17	13	7	9	3	4
	21	23	27	22	17	4	6
	99	165	135	85	32	26	2
	155	133	136	144	152	57	28
	196	76	38	26	60	170	51
i	60	60	27	77	85	43	136
	13	34	23	108	27	48	110

Gradient Magnitude

11							
	65	157	75	78	165	145	124
30							
58	86	119	98	100	101	133	113
120	70	14	150	145	144	145	143
76	13	1	168	159	22	125	143
87	136	173	39	102	163	152	176
37	9	9	179	78	27	169	166
80	36	5	10	0	64	90	73

https://www.learnopencv.com/histogram-of-oriented-gradients/

Orientation Binning

Histogram of Gradients

https://www.learnopencv.com/histogram-of-oriented-gradients/

Block Normalisation

- · Reduce light sensitivity, contrast and other variations
- Blocks grouped from cells
- Normalisation function is applied on all blocks

Block Normalisation

https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor

Feature Vector

- Image Size:
 - $64px * 64px * 3 * 1Byte \sim = 12MB$ (8 bit integer)
- HOG-Vector:
 - color x blocks x blocks x cells x cells x orientation bins
 - 3x3x3x2x2x12 = 1296 dimensional vector
 - 1269 * 4*Byte* ~= 5*MB* (32 bit float)

Example of a car image

Example of a none car image

Support Vector Machine(SVM)

- Original algorithm invented by Vapnik and Chervonenkis in 1963
- Supervised learning method for classification and regression
- Mainly used in image and handwriting recognition

- The SVM is based on the concept of linear perceptrons
- Linear separability of the data is required

Linear Perceptron (learning phase)

- Works as a boolean function
- Learning phase: the input vector is multiplied by a weight vector and a bias is added

Algorithm: Perceptron Learning Algorithm

```
\begin{array}{l} P \leftarrow inputs \quad with \quad label \quad 1;\\ N \leftarrow inputs \quad with \quad label \quad 0;\\ \text{Initialize } \mathbf{w} \text{ randomly;}\\ \text{while } lconvergence \ \mathbf{do}\\ & \quad \\ | \quad \text{Pick random } \mathbf{x} \in P \cup N ;\\ \text{ if } \mathbf{x} \in P \quad and \quad \mathbf{w}.\mathbf{x} < 0 \ \mathbf{then}\\ & \quad \\ | \quad \mathbf{w} = \mathbf{w} + \mathbf{x} ;\\ \text{ end}\\ & \quad \text{ if } \mathbf{x} \in N \quad and \quad \mathbf{w}.\mathbf{x} \ge 0 \ \mathbf{then}\\ & \quad \\ | \quad \mathbf{w} = \mathbf{w} - \mathbf{x} ;\\ & \quad \text{end} \end{array}
```

\mathbf{end}

//the algorithm converges when all the inputs are classified correctly

Linear Perceptron (learning phase)

- If the classification is wrong (input vector label contradicts output) the input vector is added to/subtracted from the weight vector
- Repitition until the algorithm reaches convergence

Algorithm: Perceptron Learning Algorithm

```
\begin{array}{l} P \leftarrow inputs \quad with \quad label \quad 1;\\ N \leftarrow inputs \quad with \quad label \quad 0;\\ \text{Initialize } \mathbf{w} \text{ randomly;}\\ \text{while } !convergence \ \mathbf{do}\\ \\ & \text{Pick random } \mathbf{x} \in P \cup N ;\\ \text{ if } \mathbf{x} \in P \quad and \quad \mathbf{w}.\mathbf{x} < 0 \ \mathbf{then}\\ \\ & \mid \mathbf{w} = \mathbf{w} + \mathbf{x} ;\\ \text{ end}\\ & \text{ if } \mathbf{x} \in N \quad and \quad \mathbf{w}.\mathbf{x} \ge 0 \ \mathbf{then}\\ \\ & \mid \mathbf{w} = \mathbf{w} - \mathbf{x} ;\\ & \text{ end} \end{array}
```

\mathbf{end}

//the algorithm converges when all the inputs are classified correctly

Linear Perceptron (learning phase)

- The result is a learned weight and bias (a hyperplane)
- A new input vector from a datapoint is evaluated by the function and gives a binary output

```
Algorithm: Perceptron Learning Algorithm

P \leftarrow inputs
with label 1;

N \leftarrow inputs
with label 0;

Initialize
w randomly;

while lconvergence do
Pick random x \in P \cup N;

if x \in P and w.x < 0 then
|

| w = w + x;
end

if x \in N and w.x \ge 0 then
|

| w = w - x;
end
```

\mathbf{end}

//the algorithm converges when all the inputs are classified correctly

https://cdn-images-1.medium.com/max/1600/1*PbJBdf-WxR0Dd0xHvEoh4A.png

Feature Vector dimensions

How to classify this data?

How to classify this data?

How to classify this data?

• Depending on the order of the input vectors the final seperating hyperplane is different

SVM

SVM

- Closest datapoints (Support Vectors) define the margin's size
- Maximizing the margin returns an optimal hyperplane $M = \frac{2}{||w||}$

SVM

- Maximizing $M = \frac{2}{||w||}$ is equal to minimizing ||w||
- This is solved by a Lagrange Multiplier

- The kernel trick is solving the problem of nonlinear data (where separating planes do not exist)
- · Nonlinear data is transformed to emulate linearity
- There are polynomial, radial and many more kernel methods

SVM (Nonlinear case)

http://beta.cambridgespark.com/courses/jpm/figures/mod5_kernel_trick.png

- Origin from thermal cameras
- Most common use in website analysis or human recognition (China)
- Uncomplicated and intuitive visualisation

Heat Map

- Made of monochrome grayscale images, binary masks or even colormaps
- Visualize informations density

 Heat maps compensate the SVMs inaccuracy (false positives)

 Heat maps compensate the SVMs inaccuracy (false positives)

• The more rectangles overlap in an area, the brighter it gets in the heat map

A threshold (of 3 or more overlappings) eliminates false positives

Example Video

example video

Results

- · Continously improving the HOG paramters
- Calculating the HOG for each individual color dimension and appending them to one feature vector improved it
- YCrCb showed an SVM's accuracy of 99% (grayscale reached 96%)

Results

- More pixels per cell led to a more general representation of vehicles
- · Less pixels would have been too detailed
- Gamma correction reduced noise

Results

- Training the SVM with only one dataset made it fail on different test images
- Adding another dataset with about 6000 images resulted in more diversity

Results

- The issue of false positives was improved by adjusting the sliding windows
- The Heat map with a threshold was very rewarding
- Extending the Heat map on consecutive frames added more stability

Results (limitations)

- Situations differentiating from highways might not work well
- · Very close and far vehicles will not be detected
- Live detection is not feasible with our current implementation

Conclusion

- Combining HOG's and SVM's we implemented a basic vehicle detector
- · Still far away from being practical for autonomous systems