
Vehicle Detection
using Histogram of Oriented Gradients and Support Vector

Machines

2019

Felix Jorczik, Philipp Rothmann

Institute for Electrical Engineering in Medicine
University of Lübeck

1 / 48

Structure

Introduction

Preprocessing

Histogram of Oriented Gradients (HOG)

Support Vector Machine (SVM)

Post Processing

Results

2 / 48

The Task

• Detect vehicle in video footage
• Camera in a cars wind-shield
• Highway environment

3 / 48

Example Video

example video

4 / 48

The Pipeline

1. Frame extraction
2. Preprocessing
→ Colorspace Conversion
→ Sliding Windows

3. Feature computation
→ Histogram of Oriented Gradient (HOG)

4. Classification
→ Support Vector Machine (SVM)

5. False positive detection
→ Heat Map

5 / 48

Colorspace Conversion

• Best results with YCbCr
• luminance information extracted in Y
• color change
• Feature computation for each channel seperately

6 / 48

Sliding Window

Generating subimages in different sizes

7 / 48

Sliding Window

8 / 48

Histogram of Oriented Gradients (HOG)

• Popular since Dalal and Triggs used them for pedestrian
detection (2005)
• Good representation of object shapes
• Distribution of gradients
• Quite small feature descriptor

9 / 48

HOG Pipeline

1. Gradient computation
2. Orientation binning
3. Block normalisation

10 / 48

Gradient Computation

• Edge detection through convolution with simple kernel
[−1,0,1]
• Calculation of the magnitude and direction
• Seperation in cells (pixel per cells)

11 / 48

https://www.learnopencv.com/histogram-of-oriented-gradients/

12 / 48

Orientation Binning

https://www.learnopencv.com/histogram-of-oriented-gradients/

13 / 48

Block Normalisation

• Reduce light sensitivity, contrast and other variations
• Blocks grouped from cells
• Normalisation function is applied on all blocks

14 / 48

Block Normalisation

https://software.intel.com/en-us/ipp-dev-reference-histogram-of-oriented-gradients-hog-descriptor
15 / 48

Feature Vector

• Image Size:
- 64px ∗ 64px ∗ 3 ∗ 1Byte ∼= 12MB (8 bit integer)

• HOG-Vector:
- color x blocks x blocks x cells x cells x orientation bins
- 3x3x3x2x2x12 = 1296 dimensional vector
- 1269 ∗ 4Byte ∼= 5MB (32 bit float)

16 / 48

Example of a car image

17 / 48

Example of a none car image

18 / 48

Support Vector Machine(SVM)

• Original algorithm invented by Vapnik and Chervonenkis in
1963
• Supervised learning method for classification and

regression
• Mainly used in image and handwriting recognition

19 / 48

Linear Perceptron

• The SVM is based on the concept of linear perceptrons
• Linear separability of the data is required

20 / 48

Linear Perceptron (learning phase)

• Works as a boolean function
• Learning phase: the input vector is multiplied by a weight

vector and a bias is added

21 / 48

Linear Perceptron (learning phase)

• If the classification is wrong (input vector label contradicts
output) the input vector is added to/subtracted from the
weight vector
• Repitition until the algorithm reaches convergence

22 / 48

Linear Perceptron (learning phase)

• The result is a learned weight and bias (a hyperplane)
• A new input vector from a datapoint is evaluated by the

function and gives a binary output

https://cdn-images-1.medium.com/max/1600/1*PbJBdf-WxR0Dd0xHvEoh4A.png

23 / 48

Linear Perceptron

24 / 48

Linear Perceptron

25 / 48

Linear Perceptron

26 / 48

Linear Perceptron

27 / 48

Linear Perceptron

28 / 48

Linear Perceptron

29 / 48

Linear Perceptron
• Depending on the order of the input vectors the final

seperating hyperplane is different

30 / 48

Linear Perceptron

31 / 48

SVM

32 / 48

SVM
• Closest datapoints (Support Vectors) define the margin’s

size
• Maximizing the margin returns an optimal hyperplane

M =
2
||w ||

33 / 48

SVM

• Maximizing M =
2
||w ||

is equal to minimizing ||w ||

• This is solved by a Lagrange Multiplier

34 / 48

SVM (Nonlinear case)

• The kernel trick is solving the problem of nonlinear data
(where separating planes do not exist)
• Nonlinear data is transformed to emulate linearity
• There are polynomial, radial and many more kernel

methods

35 / 48

SVM (Nonlinear case)

http://beta.cambridgespark.com/courses/jpm/figures/mod5_kernel_trick.png

36 / 48

Heat Map

• Origin from thermal cameras
• Most common use in website analysis or human

recognition (China)
• Uncomplicated and intuitive visualisation

37 / 48

Heat Map

• Made of monochrome grayscale images, binary masks or
even colormaps
• Visualize informations density

38 / 48

Heat Map

• Heat maps compensate the SVMs inaccuracy
(false positives)

39 / 48

Heat Map

• Heat maps compensate the SVMs inaccuracy
(false positives)

40 / 48

Heat Map

• The more rectangles overlap in an area, the brighter it gets
in the heat map

41 / 48

Heat Map

• A threshold (of 3 or more overlappings) eliminates false
positives

42 / 48

Example Video

example video

43 / 48

Results

• Continously improving the HOG paramters
• Calculating the HOG for each individual color dimension

and appending them to one feature vector improved it
• YCrCb showed an SVM’s accuracy of 99% (grayscale

reached 96%)

44 / 48

Results

• More pixels per cell led to a more general represantation of
vehicles
• Less pixels would have been too detailed
• Gamma correction reduced noise

45 / 48

Results

• Training the SVM with only one dataset made it fail on
different test images
• Adding another dataset with about 6000 images resulted in

more diversity

46 / 48

Results

• The issue of false positives was improved by adjusting the
sliding windows
• The Heat map with a threshold was very rewarding
• Extending the Heat map on consecutive frames added

more stability

47 / 48

Results (limitations)

• Situations differentiating from highways might not work well
• Very close and far vehicles will not be detected
• Live detection is not feasible with our current

implementation

48 / 48

Conclusion

• Combining HOG’s and SVM’s we implemented a basic
vehicle detector
• Still far away from being practical for autonomous systems

49 / 48

	Introduction
	Preprocessing
	Histogram of Oriented Gradients (HOG)
	Support Vector Machine (SVM)
	Post Processing
	Results
	Conclusion

